Strictly convex simplexwise linear embeddings of a $2$-disk
نویسندگان
چکیده
منابع مشابه
A Convex Approach for Learning Near-Isometric Linear Embeddings
We propose a novel framework for the deterministic construction of linear, near-isometric embeddings of a finite set of data points. Given a set of training points X ⊂ R , we consider the secant set S(X ) that consists of all pairwise difference vectors of X , normalized to lie on the unit sphere. We formulate an affine rank minimization problem to construct a matrix Ψ that preserves the norms ...
متن کاملMinimum Strictly Convex Quadrangulations of Convex
We present a linear{time algorithm that decomposes a convex polygon conformally into a minimum number of strictly convex quadrilaterals. Moreover, we characterize the polygons that can be decomposed without additional vertices inside the polygon, and we present a linear{time algorithm for such decompositions, too. As an application , we consider the problem of constructing a minimum conformal r...
متن کاملCores of convex and strictly convex games
We follow the path initiated in Shapley (1971) and study the geometry of the core of convex and strictly convex games. We define what we call face games and use them to study the combinatorial complexity of the core of a strictly convex game. Remarkably, we present a picture that summarizes our results with the aid of Pascal’s triangle. JEL classification: C71.
متن کاملStrictly Convex Corners Scatter
We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than π. This extends the earlier result of Bl̊asten, Päivärinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of (0, π).
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1985
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1985-0776400-3